建構循環永續綠建築創新科技發展策略
2019-02-26
文/蔣本基(國立臺灣大學碳循環永續技術與評估研究中心/國立臺灣大學環境工程學研究所)、羅時麒(內政部建築研究所)、黃國倉(國立臺灣大學生物環境系統工程學系)
|
專案 |
障礙與挑戰 |
---|---|
組織面 | 中央部會與地方部會間之整合與職權劃分之界定不易; 產業聚落促成機制規劃未完善,產業界投入綠建築之推動能量不足; 永續綠建築所有創新環境科技相關議程之組織機構缺乏; 永續綠建築研究、交流、合作、教育綜合平臺建構未落實。 |
法規面 | 政府對永續綠建築環境創新技術指導政策缺乏整合; 綠建築創新環境科技綜合評量體系還未健全; 整體再生能源及節約能資源及相關法規配套措施未臻完善; 區域能資源整合管理系統建置尚未完備。 |
財務面 | 關鍵技術設備與其相關原材料進口成本高,經濟效益不明顯; 利益相關團體不一致,未能整合獎勵機制和收益; 整體節能減排及能資源整合經濟成本效益不易分析評估; 永續綠建築投資成本較高,開發商與消費者難見即時利益,阻礙其應用和推廣。 |
技術面 | 技術本土化程度較低,未能高效運用與推廣應用,且具有風險和不確定性; 缺乏專業知識之建築設計團隊,綠建築之實踐度較低; 建築材料和系統的環境效益分析複雜、可用性較低; 適應市場機制的環保經濟產業鏈尚未完整形成,產業化水準低。 |
社會面 | 技術開發挑戰較高、成本回收期較長,大幅降低民眾之接受度; 資源利用和配置效率的最優化難以實現; 相關技術疊加未能整合達到資源利用最佳化,導致成本增加並降低綜合效益。 |
4. 實施策略
針對上述綠建築創新技術執行障礙與挑戰,從政策法規、經濟誘因、技術研發、評量體系、國際合作等五大面向,提出下列實施策略:
4.1 構建循環永續綠建築發展藍圖,實踐低碳循環經濟
首先政府應規劃設置專責管理單位,針對綠建築創新技術透過政策法規與相關配套的落實,完善綠建築創新環境科技相關發展方針,建構綠建築技術發展地圖與架構;並進一步研擬循環永續綠建築能資源化綠色供應鏈模式,提出最適化綠建築發展方案;應強化中央及地方政府合作機制,建立區域亮點專案示範計畫,推廣創新技術應用。
4.2 完善經濟誘因政策工具,健全綠建築市場運作機制
促進綠建築的發展,完善國家綠建築建材市場價格調節運作機制,訂定國家綠建築的標準規範;制定針對消費者的經濟激勵措施,提供優惠貸款及獎勵措施;發展永續綠建築資材再生或高質材料建材化利用產業,對優先使用綠色建材、生態工法與節能減碳設備,符合當地風土意象之建築景觀給予獎勵;規範碳權交易,並建構完善碳交易平臺,對實現綠建築所獲得之減碳量,提供實質交易機會。
4.3 研發綠建築創新技術,提升能資源利用效能
綠建築的技術策略應因地制宜,選擇和創造適宜本土的綠建築技術;綠建築技術體系宜兼顧城市整體和建築單體,並予以組織模式、模組化、系統化及整體化,達到最佳環境與經濟效益;通過產學合作模式研發出的新技術和新產品,並透過4E技術評估及驗證後再予以推廣使用,可提高資材再生或高質材料建材化利用率以及提升能源使用效率。
4.4 建置綠建築技術評估方法,完善現行綠建築評量體系
發展綠建築涉及社會經濟的方面,不僅要加快創新技術的研發速率,更要著重於完善評估體系。從工程、經濟、環境及能源均衡角度,綜合考慮各類技術及商業化風險、環境衝擊、永續性、及經濟及法規可行性等要素,建置綠建築創新環境科技評量方法;建立相關應用技術資訊庫,估算各種技術操作成本,建立生命週期評估,量化各類再利用技術之環境效益,進行成本效益分析,完善永續綠建築創新技術指標體系。
4.5 建立國際合作交流機制,建置綠建築技術交流平臺
綠建築產學技術交流平臺將有助於掌握國內外綠建築發展的最新成果、發展趨勢和成功案例,進而推動我國綠建築產業的發展。並結合建築、機械土木、水利及環境工程等跨領域專業,加強與公衛及能資源經濟專家的合作,便於行能源、經濟、環境及工程面之4E技術評估;建立國際夥伴關係與合作機制,將有助於深耕成功經驗並朝向商業化發展模式。
5. 結論與建議
西元2015年9月,聯合國正式宣佈了聯合國永續發展目標(Sustainable Development Goals, SDGs),涵蓋17個永續發展目標,以及169個子目標,其內容可以歸結為五大類,即人、地球、繁榮、和平與合作夥伴,旨在結束全球貧困、構建健康生活之願景。據此,提出循環永續綠建築創新環境科技發展策略:
(1)構建循環永續綠建築發展藍圖,實踐低碳循環經濟。
(2)完善經濟誘因政策工具,健全綠建築市場運作機制。
(3)研發永續綠建築創新技術,提升能資源利用效能。
(4)建置綠建築技術評量方法,完善現行綠建築評量體系。
(5)建立國際合作交流機制,建置綠建築技術交流平臺。
參考文獻
[1] Soleri P. Arcology: the city in the image of man [J]. 1974,
[2] Nature IUFCO, Resources N, Fund WW. World conservation strategy: living resource conservation for sustainable development [M]. Gland, Switzerland: IUCN, 1980.
[3] Lele SM. Sustainable development: a critical review [J]. World development, 1991, 19(6): 607-621.
[4] Costanza R, Daly HE. Natural capital and sustainable development [J]. Conservation biology, 1992, 6(1): 37-46.
[5] Roodman DM, Lenssen NK, Peterson JA. A building revolution: how ecology and health concerns are transforming construction [M]. Worldwatch Institute Washington, DC, 1995.
[6] Public Technology I. Sustainable Building Technical Manual: Green Building Design, Construction and Operations [M]. Public Technology, Incorporated, 1996.
[7] Council UGB. US Green Building Council [M]. US Green Building Council, 1998.
[8] Papamichael K. Green building performance prediction/assessment [J]. Building Research & Information, 2000, 28(5-6): 394-402.
[9] Campbell S. Green cities, growing cities, just cities?: Urban planning and the contradictions of sustainable development [J]. Journal of the American Planning Association, 1996, 62(3): 296-312.
[10] Sev A. How can the construction industry contribute to sustainable development? A conceptual framework [J]. Sustainable Development, 2009, 17(3): 161-173.
[11] Kibert CJ. Sustainable construction: green building design and delivery [M]. John Wiley & Sons, 2016.
[12] Crawley D, Aho I. Building environmental assessment methods: applications and development trends [J]. Building Research & Information, 1999, 27(4-5): 300-308.
[13] Cole RJ. Building environmental assessment methods: redefining intentions and roles [J]. Building Research & Information, 2005, 33(5): 455-467.
[14] Council UGB. LEED for neighborhood development [J]. a prescription for green healthy communities Available at: http://www greenhomeguide org/living green/led_for_neighborhood_ development html Accessed March, 2009, 15(
[15] Council UGB. Green building design and construction: LEED reference guide for green building design and construction [M]. US Green Building Council, 2009.
[16] Wedding GC, Crawford-Brown D. Improving the link between the LEED green building label and a building's energy-related environmental metrics [J]. Journal of Green Building, 2008, 3(2): 85-105.
[17] Chiang C-M, Lai C-M. A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan [J]. Building and environment, 2002, 37(4): 387-392.
[18] Abri E. green building evaluation system of Taiwan [J]. Architecture and Building Research Institute (ABRI), Ministry of the Interior, Taipei, Taiwan, 2009,
[19] Lin H-T. Evaluation manual for green buildings in Taiwan--EEWH-NC, 2009 edition [J]. Architecture and Building Research Institute Publications, Taiwan, 2010,
[20] Karachaliou P, Santamouris M, Pangalou H. Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens [J]. Energy and Buildings, 2016, 114(256-264.
[21] Gallet D. The Value of Green Infrastructure: A Guide to Recognizing Its Economic, Environmental and Social Benefits [J]. Proceedings of the Water Environment Federation, 2011, 2011(17): 924-928.
[22] Block AH, Livesley SJ, Williams NS. Responding to the urban heat island: A review of the potential of green infrastructure [J]. Victorian Centre forClimate Change Adaptation Research Melbourne, 2012,
[23] Foster J, Lowe A, Winkelman S. The value of green infrastructure for urban climate adaptation [J]. Center for Clean Air Policy, 2011, 750(
[24] Dunnett N, Clayden A. Rain gardens: managing water sustainably in the garden and designed landscape [M]. Timber Press (OR), 2007.
[25] Damodaram C, Giacomoni MH, Prakash Khedun C, et al. Simulation of combined best management practices and low impact development for sustainable stormwater management1 [M]. Wiley Online Library. 2010.
[26] Brattebo BO, Booth DB. Long-term stormwater quantity and quality performance of permeable pavement systems [J]. Water research, 2003, 37(18): 4369-4376.
[27] Scholz M, Grabowiecki P. Review of permeable pavement systems [J]. Building and environment, 2007, 42(11): 3830-3836.
[28] Kleerekoper L, Van Esch M, Salcedo TB. How to make a city climate-proof, addressing the urban heat island effect [J]. Resources, Conservation and Recycling, 2012, 64(30-38.
[29] Yang J, Jiang G. Experimental study on properties of pervious concrete pavement materials [J]. Cement and Concrete Research, 2003, 33(3): 381-386.
[30] Sansalone J, Kuang X, Ranieri V. Permeable pavement as a hydraulic and filtration interface for urban drainage [J]. Journal of Irrigation and Drainage Engineering, 2008, 134(5): 666-674.
[31] Turner JA. A realizable renewable energy future [J]. Science, 1999, 285(5428): 687-689.
[32] Bhandari B, Poudel SR, Lee K-T, et al. Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation [J]. international journal of precision engineering and manufacturing-green technology, 2014, 1(2): 157-173.
[33] Spiegel R, Meadows D. Green building materials: a guide to product selection and specification [M]. John Wiley & Sons, 2010.
[34] Ali HH, Al Nsairat SF. Developing a green building assessment tool for developing countries–Case of Jordan [J]. Building and environment, 2009, 44(5): 1053-1064.
[35] 朱瑾, 黃榮芳, 劉志成, et al. 結合傳統空調, 具能源效率之室內冷卻系統: 利用奈米科技液體除濕達到控制空調中之溫度與濕度 [J]. 2012,
[36] 朱屯, 王福明, 王習東. 奈米材料技術 [M]. 五南圖書出版股份有限公司, 2003.
[37] 邱培芳, 倪照鵬. 木結構建築防火技術研究及應用 [J]. 建設科技, 2012, 3(28-31.
[38] Ogoshi M, Suzuki Y, Asano T. Water reuse in Japan [J]. Water science and technology, 2001, 43(10): 17-23.
[39] Al-Jayyousi OR. Greywater reuse: towards sustainable water management [J]. Desalination, 2003, 156(1-3): 181-192.
[40] Al-Salaymeh A, Al-Khatib IA, Arafat HA. Towards sustainable water quality: management of rainwater harvesting cisterns in southern Palestine [J]. Water resources management, 2011, 25(6): 1721-1736.
[41] Eroksuz E, Rahman A. Rainwater tanks in multi-unit buildings: A case study for three Australian cities [J]. Resources, Conservation and Recycling, 2010, 54(12): 1449-1452.
[42] Ward S, Memon F, Butler D. Rainwater harvesting: model-based design evaluation [J]. Water science and technology, 2010, 61(1): 85-96.
[43] Schubert JE, Sanders BF. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency [J]. Advances in Water Resources, 2012, 41(49-64.
[44] 楊一夫. 基於海綿城市的廈門城市道路雨水 LID 系統研究 [J]. 廈門科技, 2016, 1(013.
[45] 志明劉. 探析海綿城市理論及其在城市規劃中理論 [J]. 城市規劃, 2016, 1(2):
[46] Morgan P. Toilets That Make Compost: Low-cost, sanitary toilets that produce valuable compost for crops in an African context [M]. EcoSanRes Programme, 2007.
[47] Anand CK, Apul DS. Composting toilets as a sustainable alternative to urban sanitation–A review [J]. Waste management, 2014, 34(2): 329-343.
[48] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies [J]. Renewable and sustainable energy reviews, 2011, 15(3): 1625-1636.
[49] 董海濤, 董海波. 淺談建築中的自然通風和住宅建築設計 [J]. 中國新技術新產品, 2009, 15): 171-171.
[50] 潘衛明. 自然通風技術在建築節能方面的實現方法 [J]. 中小企業管理與科技, 2009, 36): 175-175.